Publications

Assets such as animations, datasets, software and selected press articles are listed under each publication. Note that the Github links and Zenodo DOIs point to evolving products which may differ from versions used in the publication. Please mention the release number or version DOI when referring to code and data products in publications.

Research papers

[17]
A. Løkkegaard, K. D. Mankoff, C. Zdanowicz, G. D. Clow, M. P. Lüthi, S. H. Doyle, H. H. Thomsen, D. Fisher, J. Harper, A. Aschwanden, B. M. Vinther, D. Dahl-Jensen, H. Zekollari, T. Meierbachtol, I. McDowell, N. Humphrey, A. Solgaard, N. B. Karlsson, S. A. Khan, B. Hills, R. Law, B. Hubbard, P. Christoffersen, M. Jacquemart, J. Seguinot, R. S. Fausto, and W. T. Colgan  Greenland and Canadian Arctic ice temperature profiles database, The Cryosphere, 17:3829–3845, https://doi.org/10.5194/tc-17-3829-2023, 2023.
[16]
J. Seguinot and I. Delaney. Last-glacial-cycle glacier erosion potential in the Alps. Earth Surf. Dynam., 9:923–935, https://doi.org/10.5194/esurf-9-923-2021, 2021.
[data]
Alpine ice sheet erosion potential aggregated variables.
[video]
Alpine glaciers erosion potential over the last 120000 years.
Alpine glacial cycle erosion vs ice volume.
Alpine glacial cycle erosion vs bedrock altitude.
[15]
E. C. H. van Dongen, G. Jouvet, S. Sugiyama, E. A .Podolskiy, M. Funk, D. I. Benn, F. Lindner, A. Bauder, J. Seguinot, S. Leinss, and F. Walter. Thinning leads to calving-style changes at Bowdoin Glacier, Greenland. The Cryosphere, 15:485–500, https://doi.org/10.5194/tc-15-485-2021, 2021.
[data]
Photo time series from Bowdoin Glacier, Greenland (2014-2019).
GPS measurements of glacier flow on Bowdoin Glacier, Greenland, July 2019.
Mapping of the calving front of Bowdoin Glacier, Northwest Greenland, by UAV photogrammetry (2017).
Mapping of the calving front of Bowdoin Glacier, Northwest Greenland, by UAV photogrammetry (2019).
[14]
J. Seguinot, M. Funk, A. Bauder, T. Wyder, C. Senn, and S. Sugiyama. Englacial warming indicates deep crevassing in Bowdoin Glacier, Greenland. Front. Earth Sci., 8, https://doi.org/10.3389/feart.2020.00065, 2020.
[data]
Bowdoin Glacier borehole temperature data.
[13]
M. A. Imhof, D. Cohen, J. Seguinot, A. Aschwanden, M. Funk and G. Jouvet. Modelling a paleo valley glacier network using a hybrid model: an assessment with a Stokes ice flow model. J. Glaciology, 65(254):1000–1010, https://doi.org/10.1017/jog.2019.77, 2019.
[12]
B. de Fleurian, M. A. Werder, S. Beyer, D. J. Brinkerhoff, I. Delaney, C. F. Dow, J. Downs, O. Gagliardini, M. J. Hoffman, R. LeB Hooke, J. Seguinot, and A. N. Sommers. SHMIP The Subglacial Hydrology Model Intercomparison Project. J. Glaciology, 64(248):897–916, https://doi.org/10.1017/jog.2018.78, 2018.
[code]
PISM scripts for the Subglacial Hydrology Model Intercomparison Project.
[data]
Subglacial Hydrology Model Intercomparison Project (SHMIP) Data Submissions.
[11]
J. Seguinot, S. Ivy-Ochs, G. Jouvet, M. Huss, M. Funk, and F. Preusser. Modelling last glacial cycle ice dynamics in the Alps. The Cryosphere, 12:3265–3285, https://doi.org/10.5194/tc-12-3265-2018, 2018.
[data]
Alpine ice sheet glacial cycle simulations aggregated variables.
Alpine ice sheet glacial cycle simulations continuous variables.
[press]
An ice age lasting 115,000 years in two minutes. CSCS Science, 6 Nov. 2018.
115’000 Jahre Eiszeit in zwei Minuten. ETH-News, 6 Nov. 2018.
Als Bern und Zürich noch von Eis bedeckt waren, Neue Zürcher Zeitung, 6 Nov. 2018.
Eiszeiten: Simulation zeigt Gedeih und Verderb der Alpengletscher. Spektrum der Wissenschaft, 6 Nov. 2018.
La glaciazione delle Alpi in 2 minuti. ANSA Scienza & Tecnica, 8 Nov. 2018.
Au temps des glaciers. RTS, 16 Aug. 2019.
[video]
Multiple animations in english and other languages.
[10]
G. Jouvet, Y. Weidmann, M. Kneib, M. Detert, J. Seguinot, D. Sakakibara, and S. Sugiyama. Short-lived ice speed-up and plume water flow captured by a VTOL UAV give insights into subglacial hydrological system of Bowdoin Glacier. Remote Sens. of Environ., 217:389–399, https://doi.org/10.1016/j.rse.2018.08.027, 2018.
[9]
B. Menounos, B. M. Goehring, G. Osborn, M. Margold, B. Ward, J. Bond, G. K. C. Clarke, J. J. Clague, T. Lakeman, J. Koch, M. W. Caffee, J. Gosse, A. P. Stroeven, J. Seguinot, and J. Heyman. Cordilleran Ice Sheet mass loss preceded climate reversals near the Pleistocene Termination. Science, 358(6364):781–784, https://doi.org/10.1126/science.aan3001, 2017.
[8]
G. Jouvet, J. Seguinot, S. Ivy-Ochs, and M. Funk. Modelling the diversion of erratic boulders by the Valais Glacier during the Last Glacial Maximum. J. Glaciol., 63(239):487–498, https://doi.org/10.1017/jog.2017.7, 2017.
[7]
G. Jouvet, Y. Weidmann, J. Seguinot, M. Funk, T. Abe, D. Sakakibara, H. Seddik, and S. Sugiyama. Initiation of a major calving event on the Bowdoin Glacier captured by UAV photogrammetry. The Cryosphere, 11(2):911–921, https://doi.org/10.5194/tc-11-911-2017, 2017.
[press]
When solar-powered drones meet Arctic glaciers.
[6]
P. Becker, J. Seguinot, G. Jouvet, and M. Funk. Last Glacial Maximum precipitation pattern in the Alps inferred from glacier modelling. Geogr. Helv., 71(3):173-187, https://doi.org/10.5194/gh-71-173-2016, 2016.
[5]
J. Seguinot, I. Rogozhina, A. P. Stroeven, M. Margold, and J. Kleman. Numerical simulations of the Cordilleran ice sheet through the last glacial cycle. The Cryosphere, 10(2):639–664, https://doi.org/10.5194/tc-10-639-2016, 2016.
[data]
Cordilleran ice sheet glacial cycle simulations continuous variables.
[4]
J. Seguinot, C. Khroulev, I. Rogozhina, Q. Zhang, and A. P. Stroeven. The effect of climate forcing on numerical simulations of the Cordilleran ice sheet at the last Glacial Maximum. The Cryosphere, 8(3):1087–1103, https://doi.org/10.5194/tc-8-1087-2014, 2014.
[3]
J. Seguinot and I. Rogozhina. Daily temperature variability predetermined by thermal conditions over ice-sheet surfaces. J. Glaciol., 60(221):603–605, https://doi.org/10.3189/2014jog14j036, 2014.
[2]
J. Seguinot. Spatial and seasonal effects of temperature variability in a positive degree-day glacier surface mass-balance model J. Glaciol., 59(218):1202–1204, https://doi.org/10.3189/2013JoG13J081, 2013.
[code]
PyPDD, a positive degree day model for glacier surface mass balance.
[data]
Monthly standard deviation of air temperature from ERA-Interim.
[1]
C. Petit, Y. Gunnell, N. Gonga-Saholiariliva, B. Meyer, and J. Séguinot. Faceted spurs at normal fault scarps: insights from numerical modeling. J. Geophys. Res., 114:B05403, https://doi.org/10.1029/2008JB005955, 2009.

Theses

[4]
J. Seguinot. Numerical modelling of the Cordilleran ice sheet. Ph.D. thesis, http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-106815, 2014.
[3]
J. Seguinot. Deep permafrost evolution in unstable slopes during the Holocene. M.Sc. thesis, https://doi.org/10.31237/osf.io/p4mrh, 2009.
[2]
J. Seguinot. Glacial quarrying and development of overdeepenings in glacial valleys; modelling experiments and case studies at Erdalen, Western Norway. Maîtrise thesis, https://doi.org/10.31237/osf.io/8fzd6, 2008.
[1]
J. Seguinot. Modélisation numérique des facettes triangulaires. B.Sc. thesis, https://doi.org/10.31237/osf.io/wnejz, 2007.

Reviews

[6]
C. Del Gobbo, R. R. Colucci, G. Monegato, M. Žebre, and F. Giorgi. Atmosphere–cryosphere interactions during the last phase of the Last Glacial Maximum (21 ka) in the European Alps, Clim. Past, 19:1805–1823, https://doi.org/10.5194/cp-19-1805-2023, 2023.
[5]
D. Moreno-Parada, J. Alvarez-Solas, J. Blasco, M. Montoya, and A. Robinson. Simulating the Laurentide Ice Sheet of the Last Glacial Maximum, The Cryosphere, 17:2139–2156, https://doi.org/10.5194/tc-17-2139-2023, 2023.
[4]
J. K. Cuzzone, N.-J. Schlegel, M. Morlighem, E. Larour, J. P. Briner, H. Seroussi, and C. Caron. The impact of model resolution on the simulated Holocene retreat of the southwestern Greenland ice sheet using the Ice Sheet System Model (ISSM). The Cryosphere, 13:879-893, https://doi.org/10.5194/tc-13-879-2019, 2019.
[3]
N. Gandy, J. J. Gregoire, J. C. Ely, C. D. Clark, D. M. Hodgson, V. Lee, T. Bradwell, and R. F. Ivanovic. Marine ice sheet instability and ice shelf buttressing of the Minch Ice Stream, northwest Scotland The Cryosphere, https://doi.org/10.5194/tc-12-3635-2018, 2018.
[2]
M. Kavanagh and L. Tarasov. BrAHMs V1.0: a fast, physically based subglacial hydrology model for continental-scale application. Geosci. Model Dev., 11:3497-3513, https://doi.org/10.5194/gmd-11-3497-2018, 2018.
[1]
U. Ktebs-Kanzow, P. Gierz and G. Lohmann. Estimating Greenland surface melt is hampered by melt induced dampening of temperature variability. J. Glaciol., 64(244):227-235, https://doi.org/10.1017/jog.2018.10, 2018.